Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Curr Issues Mol Biol ; 45(12): 9917-9925, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38132465

RESUMO

Autosomal recessive spastic ataxia in Charlevoix-Saguenay (ARSACS) is a neurodegenerative disorder caused by mutations in the sacsin molecular chaperone protein (SACS) gene. Since the first report from Quebec in 1978, many pathogenic ARSACS variants with significantly reduced chaperone activities have been reported worldwide in adolescents, with presumably altered protein folding. In this study, a novel SACS mutation (p.Val1335IIe, Heterozygous) was identified in a Korean patient in their 50s with late-onset ARSACS characterized by cerebellar ataxia and spasticity without peripheral neuropathy. The mutation was confirmed via whole exome sequencing and Sanger sequencing and was predicted to likely cause disease using prediction software. RT-PCR and ELISA showed decreased SACS mRNA expression and sacsin protein concentrations in the proband, supporting its implications in diseases with pathogenicity and reduced chaperone function from haploinsufficiency. Our results revealed the pathogenicity of the SACS Val1335IIe mutation in the proband patient's disease manifestation, even though the symptoms had a limited correlation with the typical ARSACS clinical triad, which could be due to the reduced chaperon function from haploinsufficiency. Furthermore, our study suggests that variants of SACS heterozygosity may have diverse symptoms, with a wide range of disease onsets for late-onset sacsinopathy.

2.
Int J Mol Sci ; 24(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37895139

RESUMO

In this manuscript, we introduced a French EOAD patient in Korea who carried the presenilin-1 (PSEN1) Glu318Gly mutations with four possible risk variants, including sortilin-related receptor 1 (SORL1) Glu270Lys, ATP-binding cassette subfamily A member 7 (ABCA7) Val1946Met, translocase of outer mitochondrial membrane 40 (TOMM40) Arg239Trp, and granulin (GRN) Ala505Gly. The patient started to present memory decline and behavioral dysfunction in his early 60s. His brain imaging presented amyloid deposits by positron emission tomography (PET-CT). The multimer detection system (MDS) screening test for plasma for amyloid oligomers was also positive, which supported the AD diagnosis. It was verified that PSEN1 Glu318Gly itself may not impact amyloid production. However, additional variants were found in other AD and non-AD risk genes, as follows: SORL1 Glu270Lys was suggested as a risk mutation for AD and could increase amyloid peptide production and impair endosome functions. ABCA7 Val1946Met was a novel variant that was predicted to be damaging. The GRN Ala505Gly was a variant with uncertain significance; however, it may reduce the granulin levels in the plasma of dementia patients. Pathway analysis revealed that PSEN1 Glu318Gly may work as a risk factor along with the SORL1 and ABCA7 variants since pathway analysis revealed that PSEN1 could directly interact with them through amyloid-related and lipid metabolism pathways. TOMM40 and PSEN1 could have common mechanisms through mitochondrial dysfunction. It may be possible that PSEN1 Glu318Gly and GRN Ala505Gly would impact disease by impairing immune-related pathways, including microglia and astrocyte development, or NFkB-related pathways. Taken together, the five risk factors may contribute to disease-related pathways, including amyloid and lipid metabolism, or impair immune mechanisms.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas Amiloidogênicas/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Granulinas/metabolismo , Proteínas Relacionadas a Receptor de LDL/metabolismo , Proteínas de Membrana Transportadoras/genética , Mutação , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Presenilina-1/genética , Presenilina-1/metabolismo , Masculino , Pessoa de Meia-Idade
3.
Cells ; 12(15)2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37566027

RESUMO

Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease affecting the upper and lower motor neurons, leading to muscle weakness, motor impairments, disabilities and death. Approximately 5-10% of ALS cases are associated with positive family history (familial ALS or fALS), whilst the remainder are sporadic (sporadic ALS, sALS). At least 50 genes have been identified as causative or risk factors for ALS. Established pathogenic variants include superoxide dismutase type 1 (SOD1), chromosome 9 open reading frame 72 (c9orf72), TAR DNA Binding Protein (TARDBP), and Fused In Sarcoma (FUS); additional ALS-related genes including Charged Multivesicular Body Protein 2B (CHMP2B), Senataxin (SETX), Sequestosome 1 (SQSTM1), TANK Binding Kinase 1 (TBK1) and NIMA Related Kinase 1 (NEK1), have been identified. Mutations in these genes could impair different mechanisms, including vesicle transport, autophagy, and cytoskeletal or mitochondrial functions. So far, there is no effective therapy against ALS. Thus, early diagnosis and disease risk predictions remain one of the best options against ALS symptomologies. Proteomic biomarkers, microRNAs, and extracellular vehicles (EVs) serve as promising tools for disease diagnosis or progression assessment. These markers are relatively easy to obtain from blood or cerebrospinal fluids and can be used to identify potential genetic causative and risk factors even in the preclinical stage before symptoms appear. In addition, antisense oligonucleotides and RNA gene therapies have successfully been employed against other diseases, such as childhood-onset spinal muscular atrophy (SMA), which could also give hope to ALS patients. Therefore, an effective gene and biomarker panel should be generated for potentially "at risk" individuals to provide timely interventions and better treatment outcomes for ALS patients as soon as possible.


Assuntos
Esclerose Amiotrófica Lateral , Doenças Neurodegenerativas , Humanos , Criança , Esclerose Amiotrófica Lateral/genética , Esclerose Amiotrófica Lateral/terapia , Esclerose Amiotrófica Lateral/metabolismo , Proteômica , Proteínas de Ligação a DNA/metabolismo , Superóxido Dismutase-1 , Biomarcadores , Fatores de Risco , DNA Helicases , RNA Helicases , Enzimas Multifuncionais
4.
Int J Mol Sci ; 24(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37176125

RESUMO

Presenilin 1 (PSEN1) is a part of the gamma secretase complex with several interacting substrates, including amyloid precursor protein (APP), Notch, adhesion proteins and beta catenin. PSEN1 has been extensively studied in neurodegeneration, and more than 300 PSEN1 mutations have been discovered to date. In addition to the classical early onset Alzheimer's disease (EOAD) phenotypes, PSEN1 mutations were discovered in several atypical AD or non-AD phenotypes, such as frontotemporal dementia (FTD), Parkinson's disease (PD), dementia with Lewy bodies (DLB) or spastic paraparesis (SP). For example, Leu113Pro, Leu226Phe, Met233Leu and an Arg352 duplication were discovered in patients with FTD, while Pro436Gln, Arg278Gln and Pro284Leu mutations were also reported in patients with motor dysfunctions. Interestingly, PSEN1 mutations may also impact non-neurodegenerative phenotypes, including PSEN1 Pro242fs, which could cause acne inversa, while Asp333Gly was reported in a family with dilated cardiomyopathy. The phenotypic diversity suggests that PSEN1 may be responsible for atypical disease phenotypes or types of disease other than AD. Taken together, neurodegenerative diseases such as AD, PD, DLB and FTD may share several common hallmarks (cognitive and motor impairment, associated with abnormal protein aggregates). These findings suggested that PSEN1 may interact with risk modifiers, which may result in alternative disease phenotypes such as DLB or FTD phenotypes, or through less-dominant amyloid pathways. Next-generation sequencing and/or biomarker analysis may be essential in clearly differentiating the possible disease phenotypes and pathways associated with non-AD phenotypes.


Assuntos
Doença de Alzheimer , Demência Frontotemporal , Doença de Parkinson , Doença de Pick , Humanos , Doença de Alzheimer/genética , Presenilina-1/genética , Demência Frontotemporal/genética , Precursor de Proteína beta-Amiloide/genética , Mutação , Fenótipo , Doença de Parkinson/genética , Presenilina-2/genética
5.
Int J Mol Sci ; 25(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38203287

RESUMO

A pathogenic mutation in presenilin-1 (PSEN1), His214Asn, was found in a male patient with memory decline at the age of 41 in Korea for the first time. The proband patient was associated with a positive family history from his father, paternal aunt, and paternal grandmother without genetic testing. He was diagnosed with early onset Alzheimer's disease (EOAD). PSEN1 His214Asn was initially reported in an Italian family, where the patient developed phenotypes similar to the current proband patient. Magnetic resonance imaging (MRI) scans revealed a mild hippocampal atrophy. The amyloid positron emission tomography (amyloid-PET) was positive, along with the positive test results of the increased amyloid ß (Aß) oligomerization tendency with blood. The PSEN1 His214 amino acid position plays a significant role in the gamma-secretase function, especially from three additional reported mutations in this residue: His214Asp, His214Tyr, and His214Arg. The structure prediction model revealed that PSEN1 protein His214 may interact with Trp215 of His-Trp cation-π interaction, and the mutations of His214 would destroy this interaction. The His-Trp cation-π interaction between His214 and Trp215 would play a crucial structural role in stabilizing the 4th transmembrane domain of PSEN1 protein, especially when aromatic residues were often reported in the membrane interface of the lipid-extracellular region of alpha helices or beta sheets. The His214Asn would alter the cleavage dynamics of gamma-secretase from the disappeared interactions between His214 and Trp215 inside of the helix, resulting in elevated amyloid production. Hence, the increased Aß was reflected in the increased Aß oligomerization tendency and the accumulations of Aß in the brain from amyloid-PET, leading to EOAD.


Assuntos
Doença de Alzheimer , Histidina , Humanos , Masculino , Histidina/genética , Triptofano , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Presenilina-1/genética , Secretases da Proteína Precursora do Amiloide , Mutação , Proteínas Amiloidogênicas , Cátions , República da Coreia
6.
Int J Mol Sci ; 23(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36362122

RESUMO

Presenilin-2 (PSEN2) mutation Thr421Met was identified from a 57-years old patient with early onset Alzheimer's disease (EOAD) for the first time in Korea. Previously, this mutation was discovered in an EOAD patient in Japan without a change on amyloid production from the cellular study. Both Korean and Japanese patients developed the disease in their 50s. Memory loss was prominent in both cases, but no additional clinical information was available on the Japanese patient. Magnetic resonance imaging (MRI) images of the Korean patient revealed asymmetric atrophies in both temporo-parietal lobes. In addition, amyloid positron emission tomography (PET) also revealed amyloid deposits in the gray matter of the temporo-parietal lobes asymmetrically. PSEN2 Thr421 was conserved among a majority of vertebrates (such as zebras, elephants, and giant pandas); hence, Thr421 could play an important role in its functions and any mutations could cause detrimental ramifications in its interactions. Interestingly, PSEN2 Thr421 could have homology with PSEN1 Thr440, as PSEN1 T440del mutations were reported from patients with AD or dementia with Lewy bodies. Hence, the changed amino acid from threonine to methionine of PSEN2 Thr421 could cause significant structural alterations in causing local protein dynamics, leading to its pathogenicity in EOAD. Lastly, PSEN2 Thr421Met may interact with other mutations in neurodegenerative disease related genes, which were found in the proband patient, such as ATP binding cassette subfamily A member 7 (ABCA7), Notch Receptor 3 (NOTCH3), or Leucine-rich repeat kinase 2 (LRRK2). These interactions of pathway networks among PSEN2 and other disease risk factors could be responsible for the disease phenotype through other pathways. For example, PSEN2 and ABCA7 may impact amyloid processing and reduce amyloid clearance. Interaction between PSEN2 and NOTCH3 variants may be associated with abnormal NOTCH signaling and a lower degree of neuroprotection. Along with LRRK2 variants, PSEN2 Thr421Met may impact neurodegeneration through Wnt related pathways. In the future, cellular studies of more than one mutation by CRISPR-Cas9 method along with biomarker profiles could be helpful to understand the complicated pathways.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Presenilina-2/genética , Doença de Alzheimer/genética , Mutação , Povo Asiático , Presenilina-1/genética , Precursor de Proteína beta-Amiloide/genética
7.
Int J Mol Sci ; 23(18)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36142879

RESUMO

Presenilin-1 (PSEN1) has been verified as an important causative factor for early onset Alzheimer's disease (EOAD). PSEN1 is a part of γ-secretase, and in addition to amyloid precursor protein (APP) cleavage, it can also affect other processes, such as Notch signaling, ß-cadherin processing, and calcium metabolism. Several motifs and residues have been identified in PSEN1, which may play a significant role in γ-secretase mechanisms, such as the WNF, GxGD, and PALP motifs. More than 300 mutations have been described in PSEN1; however, the clinical phenotypes related to these mutations may be diverse. In addition to classical EOAD, patients with PSEN1 mutations regularly present with atypical phenotypic symptoms, such as spasticity, seizures, and visual impairment. In vivo and in vitro studies were performed to verify the effect of PSEN1 mutations on EOAD. The pathogenic nature of PSEN1 mutations can be categorized according to the ACMG-AMP guidelines; however, some mutations could not be categorized because they were detected only in a single case, and their presence could not be confirmed in family members. Genetic modifiers, therefore, may play a critical role in the age of disease onset and clinical phenotypes of PSEN1 mutations. This review introduces the role of PSEN1 in γ-secretase, the clinical phenotypes related to its mutations, and possible significant residues of the protein.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Humanos , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Caderinas/genética , Cálcio , Mutação , Presenilina-1/genética , Presenilina-2/genética
8.
Front Neurol ; 13: 899644, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35756922

RESUMO

Apolipoprotein (APOE) is implicated and verified as the main risk factor for early-onset Alzheimer's disease (AD). APOE is a protein that binds to lipids and is involved in cholesterol stability. Our paper reports a case of a sporadic early-onset AD (sEOAD) patient of a 54-year-old Korean man, where a novel APOE Leu159Pro heterozygous mutation was revealed upon Whole Exome Sequence analysis. The proband's CSF showed downregulated levels of Aß42, with unchanged Tau levels. The mutation is in the Low-Density Lipoprotein Receptor (LDLR) region of the APOE gene, which mediates the clearance of APOE lipoproteins. LDLR works as a high-affinity point for APOE. Studies suggest that APOE-LDLR interplay could have varying effects. The LDLR receptor pathway has been previously suggested as a therapeutic target to treat tauopathy. However, the APOE-LDLR interaction has also shown a significant correlation with memory retention. Leu159Pro could be an interesting mutation that could be responsible for a less damaging pattern of AD by suppressing tau-association neurodegeneration while affecting the patient's memory retention and cognitive performance.

9.
Artigo em Inglês | MEDLINE | ID: mdl-35409691

RESUMO

Background: Neoadjuvant chemoradiotherapy (nCRT) prior to surgery is considered standard therapy for locally advanced rectal cancer. Unfortunately, most patients with rectal cancer are resistant to radiotherapy. This might be a genetic cause. The role of certain rectal cancer-causing genes has not been completely elucidated. This study aims to investigate the genes responsible for locally advanced rectal cancer patients not reacting to radiotherapy. Methods: Whole exome sequencing of the DNA samples was performed on the samples. Bioinformatic analysis on the subjects was established. Individual genetic information was screened to identify differently expressed genes that more frequently appeared in non-complete response (NCR) compared to complete response (CR) patients after nCRT. All variations were verified by Sanger sequencing. Results: Genotyping information and pathway analyses of the samples indicated genes such as FLCN, CALML5, and ANTXR1 to be commonly mutated in CR group, whereas genes such as GALNTL14, CNKSR1, ACD, and CUL3 were more commonly mutated in the NCR group. Chi-square test revealed some significant variants (<0.05) such as rs3744124 (FLCN), rs28365986 (ANTXR1), rs10904516 (CALML5), rs3738952 (CUL3), rs13394 and rs2293013 (PIH1D1), rs2274531 (GPA33), rs4963048 (BRSK2), rs17883366 (IL3RA), rs2297575 (PSMD5), rs2288101 (GALNT14), and rs11954652 (DCTN4). Conclusion: Identifying an array of genes that separate NCRs from CRs would lead to finding genetic biomarkers for early detection of rectal cancer patients that are resistant to nCRT. A further investigation to validate the significance of genetic biomarkers to segregate NCRs from CRs should be performed with a larger CRC dataset. Protein expression levels, as well as transcriptomic analysis, would also help us understand the mechanism of how these genes could play a role in preventing radiation therapy to patients. This would be essential to prevent redundant radiation therapy.


Assuntos
Segunda Neoplasia Primária , Neoplasias Retais , Quimiorradioterapia , Marcadores Genéticos , Humanos , Proteínas dos Microfilamentos/genética , Terapia Neoadjuvante , Receptores de Superfície Celular/genética , Neoplasias Retais/genética , Neoplasias Retais/terapia , Resultado do Tratamento
10.
Int J Infect Dis ; 120: 68-76, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35429641

RESUMO

OBJECTIVES: Escherichia coli strains of the O157 serogroup include significant foodborne pathogens: enterohemorrhagic E. coli (EHEC) and enteropathogenic E. coli, which are responsible for a considerable number of hospitalizations and deaths worldwide each year. There is a constant need for rapid, reliable, and easy-to-use methods for their identification, typing, and phylogenetic classification. In this study, we proposed a new multiplex polymerase chain reaction (PCR)-based typing system for pathogenic E. coli, focusing on the O157 serogroup. METHODS: We designed primers targeting 12 lambdoid prophage regions carried by the prototypic polylysogenic strain of EHEC, the O157:H7 Sakai strain. The reactions were tested in vitro as well as in silico with the PubMLST database. RESULTS: The PCR assays can be grouped into four multiplex reactions, and their results can be given as a four-digit code. In vitro and in silico testing showed that these Sakai prophage regions are prevalent not only in E. coli O157 strains but also in Shiga toxigenic E. coli non-O157 strains and the method provides appropriate resolution. CONCLUSIONS: The proposed method could be a valuable tool in epidemiologic tracing and preliminary phylogenetic grouping of this diverse group of pathogens.


Assuntos
Escherichia coli Êntero-Hemorrágica , Infecções por Escherichia coli , Escherichia coli O157 , Proteínas de Escherichia coli , Escherichia coli Shiga Toxigênica , Escherichia coli Êntero-Hemorrágica/genética , Escherichia coli O157/genética , Proteínas de Escherichia coli/genética , Humanos , Reação em Cadeia da Polimerase Multiplex , Filogenia , Prófagos/genética
11.
Microorganisms ; 10(3)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35336173

RESUMO

In the two years since the SARS-CoV-2 pandemic started, it has caused over 5 million deaths and 400 million infected cases, and the world continues to be on high alert for COVID-19. Among the variants of interest and concern of SARS-CoV-2, the current Omicron (B.1.1.529) and stealth Omicron (BA.2) raised serious concerns due to rapid rates of infection caused by numerous mutations in the spike protein, which could escape from the antibody-mediated neutralization and increase the risk of reinfections. Hence, this work aims to describe the most relevant mutations in the SARS-CoV-2 spike protein, discuss vaccine against variant of concerns, describe rare adverse events after COVID-19 vaccination, introduce the most available promising COVID-19 vaccine candidates, and provide few perspectives of the future variants.

12.
Int J Mol Sci ; 23(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35008978

RESUMO

Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is an early-onset neurodegenerative disease that was originally discovered in the population from the Charlevoix-Saguenay-Lac-Saint-Jean (CSLSJ) region in Quebec. Although the disease progression of ARSACS may start in early childhood, cases with later onset have also been observed. Spasticity and ataxia could be common phenotypes, and retinal optic nerve hypermyelination is detected in the majority of patients. Other symptoms, such as pes cavus, ataxia and limb deformities, are also frequently observed in affected individuals. More than 200 mutations have been discovered in the SACS gene around the world. Besides French Canadians, SACS genetics have been extensively studied in Tunisia or Japan. Recently, emerging studies discovered SACS mutations in several other countries. SACS mutations could be associated with pathogenicity either in the homozygous or compound heterozygous stages. Sacsin has been confirmed to be involved in chaperon activities, controlling the microtubule balance or cell migration. Additionally, sacsin may also play a crucial role in regulating the mitochondrial functions. Through these mechanisms, it may share common mechanisms with other neurodegenerative diseases. Further studies are needed to define the exact functions of sacsin. This review introduces the genetic mutations discovered in the SACS gene and discusses its pathomechanisms and its possible involvement in other neurodegenerative diseases.


Assuntos
Predisposição Genética para Doença , Proteínas de Choque Térmico/genética , Espasticidade Muscular/diagnóstico , Espasticidade Muscular/genética , Doenças Neurodegenerativas/etiologia , Fenótipo , Ataxias Espinocerebelares/congênito , Alelos , Substituição de Aminoácidos , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Gerenciamento Clínico , Regulação da Expressão Gênica , Estudos de Associação Genética , Genótipo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Humanos , Mitocôndrias/metabolismo , Espasticidade Muscular/terapia , Mutação , Doenças Neurodegenerativas/diagnóstico , Domínios e Motivos de Interação entre Proteínas , Ataxias Espinocerebelares/diagnóstico , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/terapia
13.
Int J Mol Sci ; 24(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36614069

RESUMO

Prion gene (PRNP) mutations are associated with diverse disease phenotypes, including familiar Creutzfeldt-Jakob Disease (CJD), Gerstmann-Sträussler-Scheinker disease (GSS), and fatal familial insomnia (FFI). Interestingly, PRNP mutations have been reported in patients diagnosed with Alzheimer's disease, dementia with Lewy bodies, Parkinson's disease, and frontotemporal dementia. In this review, we describe prion mutations in Asian countries, including Republic of Republic of Korea, China, and Japan. Clinical phenotypes and imaging data related to these mutations have also been introduced in detail. Several prion mutations are specific to Asians and have rarely been reported in countries outside Asia. For example, PRNP V180I and M232R, which are rare in other countries, are frequently detected in Republic of Korea and Japan. PRNP T188K is common in China, and E200K is significantly more common among Libyan Jews in Israel. The A117V mutation has not been detected in any Asian population, although it is commonly reported among European GSS patients. In addition, V210I or octapeptide insertion is common among European CJD patients, but relatively rare among Asian patients. The reason for these differences may be geographical or ethical isolation. In terms of clinical phenotypes, V180I, P102L, and E200K present diverse clinical symptoms with disease duration, which could be due to other genetic and environmental influences. For example, rs189305274 in the ACO1 gene may be associated with neuroprotective effects in cases of V180I mutation, leading to longer disease survival. Additional neuroprotective variants may be possible in cases featuring the E200K mutation, such as KLKB1, KARS, NRXN2, LAMA3, or CYP4X1. E219K has been suggested to modify the disease course in cases featuring the P102L mutation, as it may result in the absence of prion protein-positive plaques in tissue stained with Congo red. However, these studies analyzed only a few patients and may be too preliminary. The findings need to be verified in studies with larger sample sizes or in other populations. It would be interesting to probe additional genetic factors that cause disease progression or act as neuroprotective factors. Further studies are needed on genetic modifiers working with prions and alterations from mutations.


Assuntos
Síndrome de Creutzfeldt-Jakob , Doença de Gerstmann-Straussler-Scheinker , Doenças Priônicas , Príons , Humanos , Príons/genética , Doenças Priônicas/genética , Doenças Priônicas/diagnóstico , Japão/epidemiologia , Proteínas Priônicas/genética , Doença de Gerstmann-Straussler-Scheinker/genética , Síndrome de Creutzfeldt-Jakob/genética , Mutação
14.
Brain Sci ; 11(10)2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34679393

RESUMO

Presenilin-1 (PSEN1) is one of the causative genes for early onset Alzheimer's disease (EOAD). Recently, emerging studies have reported several novel PSEN1 mutations among Asians. In this study, a PSEN1 Val96Phe mutation was discovered in two siblings from Malaysia with a strong family history of disease. This is the second report of PSEN1 Val96Phe mutation among EOAD patients in Asia and in the world. Patients presented symptomatic changes in their behaviors and personality, such as apathy and withdrawal in their 40s. Previous cellular studies with COS1 cell lines revealed the mutation increased the amyloid-ß42 (Aß42) productions. In the present study, whole-exome sequencing was performed on the two siblings with EOAD, and they were analyzed against the virtual panel of 100 genes from various neurodegenerative diseases. In silico modeling was also performed on PSEN1 Val96Phe mutation. This mutation was located on the first transmembrane helix of PSEN1 protein, resulting significant intramolecular stresses in the helices. This helical domain would play a significant role in γ-secretase cleavage for the increased Aß42 productions. Several other adjacent mutations were reported in this helical domain, including Ile83Thr or Val89Leu. Our study suggested that perturbations in TMI-HLI-TMII regions could also be associated with C-terminal fragment accumulation of APP and enhanced amyloid productions.

15.
Adv Exp Med Biol ; 1321: 3-19, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33656709

RESUMO

Within the last two decades, several members of the Coronaviridae family demonstrated epidemic potential. In late 2019, an unnamed genetic relative, later named SARS-CoV-2 (COVID-19), erupted in the highly populous neighborhoods of Wuhan, China. Unchecked, COVID-19 spread rapidly among interconnected communities and related households before containment measures could be enacted. At present, the mortality rate of COVID-19 infection worldwide is 6.6%. In order to mitigate the number of infections, restrictions or recommendations on the number of people that can gather in a given area have been employed by governments worldwide. For governments to confidently lift these restrictions as well as counter a potential secondary wave of infections, alternative medications and diagnostic strategies against COVID-19 are urgently required. This review has focused on these issues.


Assuntos
COVID-19 , Epidemias , China , Humanos , SARS-CoV-2
16.
Mol Cell Toxicol ; 16(4): 355-357, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32837527

RESUMO

PURPOSE OF REVIEW: Within the last two decades several members of the Coronaviridae family namely Severe Respiratory Syndrome (SARS-CoV) and Middle East Respiratory Syndrome (MERS-CoV) have demonstrated epidemic potential. In late, 2019 an unnamed genetic relative, later named SARS-CoV-2 realized its potential in the highly populous neighborhoods of Wuhan, China. Unchecked, the virus rapidly spread among interconnected communities and related households before containment measures could be in acted. "Appropriate" diagnostic testing in response to the SARS-CoV-2 outbreak should be urgently considered. This perspective review gives particular attention to the potential diagnostic testing of the virus in semen and seminal fluids due to its high levels of angiotensin converting enzyme 2 (ACE2) precursor. RECENT FINDINGS: As many infectious viruses are stable in semen and have transmitted the respective diseases, the presence of SARS-CoV-2 should be tested in semen to assess their stabilities and half-life. As in case of Ebola virus, it was present in semen for longer period in a carrier man without any symptom. Additional hypothesis is that since ACE2 could serve as a mediator for the endocytosis of the previously SARS coronavirus, SARS-CoV-2 may enter the cells through similar mechanism. From the protein expression atlas, high levels of ACE2 precursor were found in intestines and testis. Hence, the testis and seminal fluids could be the host cell and/or reservoir. The results could be used as a suggestive guideline for the sexual activities after the discharge or declaration of disease free.

17.
Diagnostics (Basel) ; 10(6)2020 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-32545847

RESUMO

We report a probable pathogenic Thr119Ile mutation in presenilin-1 (PSEN1) in two unrelated Korean patients, diagnosed with early onset Alzheimer's disease (EOAD). The first patient presented with memory decline when she was 64 years old. Magnetic resonance imaging (MRI) scans showed diffuse atrophy in the fronto-parietal regions. In addition, 18F-fludeoxyglucose positron emission tomography (FDG-PET) showed reduced tracer uptake in the parietal and temporal cortices, bilaterally. The second patient developed memory dysfunction at the age of 49, and his mother was also affected. Amyloid positron emission tomography (PET) was positive, but MRI scans did not reveal any atrophy. Targeted NGS and Sanger sequencing identified a heterozygous C to T exchange in PSEN1 exon 5 (c.356C>T), resulting in a p.Thr119Ile mutation. The mutation is located in the conserved HL-I loop, where several Alzheimer's disease (AD) related mutations have been described. Structure analyses suggested that Thr119Ile mutation may result in a significant change inside conservative loop. Additional in vitro studies are needed to estimate the role of the PSEN1 Thr119Ile in AD disease progression.

18.
Curr Alzheimer Res ; 17(5): 438-445, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32589559

RESUMO

BACKGROUND: Presenilin 1 (PSEN1) was suggested as the most common causative gene of early onset Alzheimer's Disease (AD). METHODS: Patient who presented progressive memory decline in her 40s was enrolled in this study. A broad battery of neuropsychological tests and neuroimaging was applied to make the diagnosis. Genetic tests were performed in the patient to evaluate possible mutations using whole exome sequencing. The pathogenic nature of missense mutation and its 3D protein structure prediction were performed by in silico prediction programs. RESULTS: A pathogenic mutation in PSEN1 (NM_000021.3: c.1027T>C p.Ala285Val), which was found in a Korean EOAD patient. Magnetic resonance imaging scan showed mild left temporal lobe atrophy. Hypometabolism appeared through 18F-fludeoxyglucose Positron Emission Tomography (FDG-PET) scanning in bilateral temporal and parietal lobe, and 18F-Florbetaben-PET (FBB-PET) showed increased amyloid deposition in bilateral frontal, parietal, temporal lobe and hence presumed preclinical AD. Protein modeling showed that the p.Ala285Val is located in the random coil region and could result in extra stress in this region, resulting in the replacement of an alanine residue with a valine. This prediction was confirmed previous in vitro studies that the p.Trp165Cys resulted in an elevated Aß42/Aß40 ratio in both COS-1 and HEK293 cell lines compared that of wild-type control. CONCLUSION: Together, the clinical characteristics and the effect of the mutation would facilitate our understanding of PSEN1 in AD pathogenesis for the disease diagnosis and treatment. Future in vivo study is needed to evaluate the role of PSEN1 p.Ala285Val mutation in AD progression.


Assuntos
Alanina/genética , Doença de Alzheimer/genética , Mutação/genética , Presenilina-1/genética , Valina/genética , Doença de Alzheimer/diagnóstico por imagem , Sequência de Aminoácidos , Feminino , Humanos , Pessoa de Meia-Idade , Linhagem , Presenilina-1/química , Estrutura Secundária de Proteína
19.
Int J Mol Sci ; 21(10)2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32429229

RESUMO

Alzheimer's disease (AD) is the most common cause of dementia. Although the heritability of AD is high, the knowledge of the disease-associated genes, their expression, and their disease-related pathways remain limited. Hence, finding the association between gene dysfunctions and pathological mechanisms, such as neuronal transports, APP processing, calcium homeostasis, and impairment in mitochondria, should be crucial. Emerging studies have revealed that changes in gene expression and gene regulation may have a strong impact on neurodegeneration. The mRNA-transcription factor interactions, non-coding RNAs, alternative splicing, or copy number variants could also play a role in disease onset. These facts suggest that understanding the impact of transcriptomes in AD may improve the disease diagnosis and also the therapies. In this review, we highlight recent transcriptome investigations in multifactorial AD, with emphasis on the insights emerging at their interface.


Assuntos
Doença de Alzheimer/genética , Transcriptoma/genética , Doença de Alzheimer/terapia , Variações do Número de Cópias de DNA/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , RNA não Traduzido/genética , RNA não Traduzido/metabolismo
20.
Diagnostics (Basel) ; 10(3)2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32121568

RESUMO

A pathogenic mutation in PSEN1 p.Glu184Gly was discovered in a Thai family with early onset Alzheimer's disease (EOAD) as the first case in Asia. Proband patient presented memory impairment and anxiety at the age of 41 years. Family history was positive, since several family members were also diagnosed with dementia (father and grandfather). MRI in the patient revealed global cortical atrophy without specific lesions or lacuna infarctions. Extensive genetic profiling for 50 neurodegenerative disease related genes was performed by next generation sequencing (NGS) on the patient. PSEN1 Glu184Gly was previously reported in French families with frontal variant Alzheimer's disease (AD). Interestingly, this mutation is located near the splicing site and could possibly result in abnormal cleavage of PSEN1 transcript. Furthermore, 3D models from protein structural predictions revealed significant structural changes, since glycine may result in increased flexibility of TM-III helix. Inter/intra-helical interactions could also be altered. In the future, functional studies should be performed to verify the probable role PSEN1 Glu184Gly in amyloid beta processing and pathogenicity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...